我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:香港六合彩挂牌 > 多面体模型 >

怎样学好高中数学立体几何?

归档日期:07-30       文本归类:多面体模型      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  推荐于2017-09-26展开全部我觉得立体几何的题目类型和解题思路基本上就是那么几种,所以想学好立体几何我的经验是要注重基本的概念和定理!要把直线/面/体等等概念之间的联系和关系弄清楚,然后做一些典型的题目,注意归纳解题方法就差不多了!

  我个人感觉,坐标系是立体几何里面一个很有用的工具.很多思路很难想到的题目用坐标系解就很容易(就是算的有点麻烦^).

  其实立体几何在高中都是比较简单的!要对自己有信心,千万不要害怕!肯定可以学好的~~~我们以前也是听别人说立体几何有多难多难,就自己吓唬自己,其实到高考的时候发现立体几何还是很简单的~~~只要你知识掌握扎实肯定没有问题!

  2、牢固的平面几何基础:因为立体几何问题的解决,都是在平面上处理的,多用平面几何的知识。

  3、要能把立体问题,化为平面问题,这里有经验和技巧,通过多作题,自己就会体会到的!

  4、牢牢地掌握立体几何的概念、定理、法则、公式,并能再作题过程中强化它!

  1、图形方面:不但要学会看图,而且要学会画图,通过看图和画培养自己的空间想象能力是非常重要的。

  2、语言方面:很多同学能把问题想清楚,但是一落在纸面上,不成话。需要记的一句话:

  几何语言最讲究言之有据,言之有理。也就是说没有根据的话不要说, 不符合定理的话不要说。

  1、把几何中所有的定理分类:按定理的已知条件分类是性质定理,按定理的结论分类是判定定理。

  如:平行于同一条直线的两条直线平行,既可以把它看成是两条直线平行的性质定理,也可以把它看

  又如如果两个平面平行且同时和第三个平面相交,那么它们的交线平行。它既是两个平面平行的性质定理

  又是两条直线平行的判定定理。这样分类之后,就可以做到需要什么就可以找到什么,比如:我们要证明直线

  一定要知道自己要做什么!在证明之前就要设计好路线,明确自己的每一步的目的,学会大胆假设,仔细推理。

  高中数学中的立体几何部分,知识点比较多,讲解的立体几何图形有很多,而且介绍的图形变换有好多种,我推荐你在学习立体几何知识时借助《几何画板》,它是一款人教版初高中指定教育软件,现在好多老师都在用,当然也有很多学生也在使用。用这个软件来做动态的演示,让学生们直观看到图形的变化,更加易于理解,从而就会对学习几何更加感兴趣了。如果立体几何学习不好,就用几何画板试试,肯定会让你受益匪浅。现在访问几何画板官网,就可以免费下载最新版几何画板了。

  要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。要学会用图帮助解决问题,要掌握求各种角、距离的基本方法和推理证明的基本方法——分析法、综合法、反证法。

  立体几何的学习离不开图形,图形是一种语言,图形能直观地感受空间线面的位置关系,培养空间想象能力。所以在立体几何的学习中,要树立图形观,通过作图、读图、用图、拼图、变图培养我们的思维能力。

  ⑴作图:作图是立体几何学习中的基本功,对培养空间概念也有积极的意义,而且在作图时还要用到许多空间线面的关系。所以作图是解决立体几何问题的第一步,作好图有利于问题的解决。

  ⑵读图:图形中往往包含着深刻的意义,对图形理解的程度影响着正确解题,所以读懂图形是解决问题的重要一环。

  ⑶用图:在立体几何的学习中,会遇到许多似是而非的结论。要证明它,但一时无法完成,这时可考虑通过构造一个特殊的图形来推翻结论,这样的图形就是反例图形。若心中有这样的反例图形,那就可以迅速作出判断。

  ⑷拼图:空间基本图形由点、线、面构成,而一些特殊的图形也可以通过基本图形拼接得到。在拼图的过程中,会发现一些变和不变的东西,从中感悟出这个图形的特点,找出解决待求解问题的方法。

  立体几何的证明是数学学科中的重点。历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。

  解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。

  为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养对空间图形的想象能力和识别能力。

  还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。

  在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。

本文链接:http://bv-gs.net/duomiantimoxing/1366.html